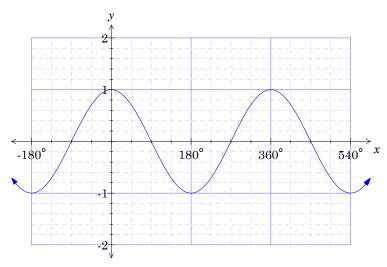
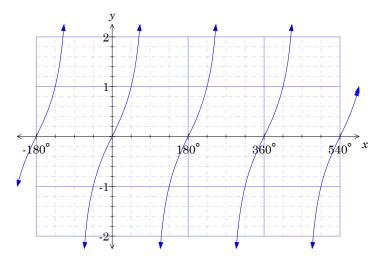
Activity 20 Trigonometric graph transformations

- 1. $y = \sin x$: x-intercepts at multiples of 180° y-intercept at the origin period 360° amplitude 1 unit
- 2. $y = a \sin x$ Vertical dilation by factor a.
- 3. $y = \sin x + v$ Vertical translation v units.
- 4. $y = \sin(bx)$ Horizontal dilation factor $\frac{1}{b}$.
- 5. $y = \sin(x+h)$ Horizontal translation -h units.
- 6. Note: Other answers are possible.
 - a) $y = 2\sin(3x)$
 - b) $y = 3\sin(x 30^\circ)$
 - c) $y = \sin(2x) 1$
 - d) $y = -\sin\left(\frac{x}{2}\right) + 1$
- 7. $y = \cos x$

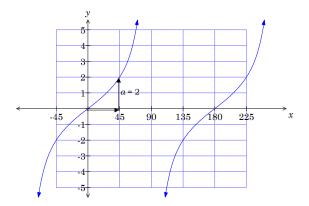


8. Transformations for $y = a \cos(b(x+h)) + v$ are the same as those for the sine function above.

9. $y = \tan x$



10. Transformations are the same as those for sine and cosine. Note that the a value can be determined by looking at the vertical movement required to move to the right from a point of inflection to a point halfway to the asymptote. For example, the graph below shows $y = 2 \tan x$:



- 11. a) $y = \tan(x + 30^\circ)$
 - b) $y = \tan(3x) 2$
- 12. to 14. Transformations to all functions in radians are the same as those for degrees. Care must be taken with horizontal dilations. In general, b represents the number of cycles in 360° , i.e. 2π radians for the sine and cosine functions, and the number of cycles in 180° for tangent.
- 15. a) $y = 3\cos\left(2\left(x \frac{\pi}{6}\right)\right)$
 - b) $y = -4\sin(3x)$
 - c) $y = 0.5 \tan(3x)$
 - d) $y = 0.8 \cos\left(\frac{\pi x}{4}\right)$